

Installation reference: _____

Date of installation: _____

Customer: _____

Installer: _____

Vehicle chassis (VIN) number: _____

Vehicle license plate: _____

Vehicle make and model: _____

Done

- AC out earth is connected to chassis
- All connections are checked for polarity and short circuit
- All bolt connections have both flat and spring washer
- All bolt connections are tightened with the correct torque and marked
- All plugs are correctly mounted and undamaged
- Take picture of Battery Module connection side of the E-GEN showing bolt markings
- Take picture of DC input/output connection side of the E-GEN showing bolt markings
- Take picture of the front of the E-GEN
- Take picture of the modem label
- Take pictures of the serial number labels on the E-GEN module and Battery Modules

Disable the three-phase and single-phase RCD on the E-GEN before proceeding.

	Result	Expected values
Connect AC in and verify that the display turns on		Display turns on
Measure on the single-phase AC output		~230 VAC
Measure on the terminals of each Battery module		~12 V
Turn on DC out from Display and measure on the DC output		~12 V
Measure on each set of Solar terminals (as applicable)		>10 V
Activate the ignition signal and verify that the E-GEN turns on and start charging		~90 A

Enable the three-phase and single-phase RCD on the E-GEN.

Turn on the 230 VAC output.

Attach a 3000 W single-phase load one at a time (not simultaneously) to each 230 VAC output installed in the vehicle.

	Result	Expected values
For each 230 VAC output measure the voltage after 5 minutes		230 VAC
For each output test the earth connection with an RCD tester		RCD must trip

Turn off the 230 VAC output.

Turn on the 400 VAC output.

Attach a 9000 W three-phase load one at a time (not simultaneously) to each 400 VAC output installed in the vehicle.

	Result	Expected values
For each 400 VAC output measure the voltage after 5 minutes		400 VAC
For each output test the earth connection with an RCD tester		RCD must trip

For the last 400 VAC output keep the load connected for 10 minutes.

	Result	Expected values
Look at the Battery Current Unbalance display on Grafana		<20 A difference

Remove the AC loads, connect AC in and recharge the batteries to full.

	Result	Expected values
Look at the Battery Current Unbalance display on Grafana		<20 A difference

Upload this document and all pictures to: service@claytonpower.com